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A b s t r a c t. In this study, HYDRUS-2D/3D was used to 
simulate ponded infiltration through double-ring infiltrometers 
into a hypothetical loamy soil profile. Twelve scenarios of inverse 
modelling (divided into three groups) were considered for esti-
mation of Mualem-van Genuchten hydraulic parameters. In the 
first group, simulation was carried out solely using cumulative 
infiltration data. In the second group, cumulative infiltration data 
plus water content at h = −330 cm (field capacity) were used as 
inputs. In the third group, cumulative infiltration data plus water 
contents at h = −330 cm (field capacity) and h = −15 000 cm 
(permanent wilting point) were used simultaneously as predic-
tors. The results showed that numerical inverse modelling of 
the double-ring infiltrometer data provided a reliable alternative 
method for determining soil hydraulic parameters. The results 
also indicated that by reducing the number of hydraulic parame- 
ters involved in the optimization process, the simulation error 
is reduced. The best one in infiltration simulation which para- 
meters α, n, and Ks were optimized using the infiltration data 
and field capacity as inputs. Including field capacity as addi-
tional data was important for better optimization/definition of 
soil hydraulic functions, but using field capacity and permanent 
wilting point simultaneously as additional data increased the simu- 
lation error.

K e y w o r d s: double-ring infiltrometer, Mualem-van Genuch- 
ten model, HYDRUS-2D/3D, inverse modelling, statistical criteria

INTRODUCTION

The vadose zone has a fundamental role in many aspects 
of hydrology, including infiltration, soil moisture storage, 
evaporation, plant water uptake, groundwater recharge, run-
off, and erosion (Nakhaei and Šimůnek, 2014). Knowledge 
of the hydraulic properties of unsaturated soils (ie the reten-

tion curve, θ(h), and the hydraulic conductivity functions, 
K(h)) is essential for most or all studies involving water 
flow and solute transport in the vadose zone (Bitterlich et 
al., 2004). Most traditional methods to determine these 
properties require relatively restrictive initial and boundary 
conditions, and thus can be time-consuming, laborious, and 
expensive. Moreover, data from accurate but small-scale 
laboratory measurements could hardly ever be transferred 
to the field scale (Asgarzadeh et al., 2014).

Significant advances in computational capabilities in 
the 1980s have stimulated research on the use of inverse 
modelling for estimation of the soil retention and unsatu-
rated hydraulic conductivity functions (Wöhling and Vrugt, 
2011). In this method, the numerical solution of the Richards 
equation is utilized for estimation of the soil hydraulic 
parameters. The numerical solution of the Richards equa-
tion requires an iterative implicit technique with fine 
discretization in space, which results in a tedious solving 
process (Damodhara Rao et al., 2006). Based on the finite 
element method, the HYDRUS-1D and HYDRUS-2D/3D 
codes were developed to solve the Richards equation and 
have been widely used to simulate one-dimensional and 
two- and three-dimensional water movement in variably 
saturated media (Šimůnek et al., 2011).

HYDRUS software is one of the most complete pack-
ages for simulating water, heat, and solute movement in 
both two- and three-dimensional variably saturated and 
porous media (Šimůnek et al., 2008). Many investigators 
have used this software to evaluate either field or laboratory 
experiments or other mathematical models (Alletto et al., 
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2015; El-Nesr et al., 2014; Kandelous and Šimůnek, 2010; 
Pollalis and Valiantzas, 2015; Ramos et al., 2012; Rashid et 
al., 2015). The HYDRUS model enables its users to trace 
the movement of water and solutes and the wetting patterns 
in both simple and complex geometries for homogeneous 
or heterogeneous soils and for different combinations of 
initial and boundary conditions (El-Nesr, 2014).

In recent years, analysis of water infiltration experimen-
tal data has become a widely used practice for obtaining 
soil hydraulic properties through the inverse modelling. 
The infiltration rate and its variation with time depend 
upon the initial water content, as well as on the texture, 
structure, and uniformity (or layering sequence) of the soil 
profile (Reynolds et al., 2002a, b). Considerable atten-
tion has been given to the prediction of soil hydraulic 
properties from ponded or tension infiltration experiments 
(Bohne et al., 1993; Russo et al., 1991; Šimůnek and van 
Genuchten, 1996). The double-ring infiltrometer is a stan- 
dard, well-known, and widely used instrument for in situ 
measurements of infiltration. However, there are relatively 
few studies on the accuracy of measured infiltration data 
via this method for reliable estimation of soil hydraulic 
parameters.

Russo et al. (1991) and Šimůnek and van Genuchten 
(1996) reported that the cumulative infiltration data of pon-
ded and tension infiltration experiments does not provide 
enough information to obtain a unique set of optimized 
parameters. It is commonly reported that some additional 
information is needed to obtain unique solutions for a large 
number of parameters. Such additional information could 
include water contents and/or pressure heads (Šimůnek and 
van Genuchten, 1996), solute concentrations (Abbasi et 
al., 2003), or temperatures (Nakhaei and Šimůnek, 2014) 
measured at a certain depth in the soil profile. However, 
little is known about the effect of including additional data 
as a predictor on the efficiency and uniqueness of inverse 
modelling of double-ring infiltrometer data.

The objectives of this study were:
 – to identify the suitability of cumulative infiltration data 
derived from a double-ring infiltrometer for the estima-
tion of soil hydraulic parameters,

 – to determine the best combination of hydraulic para- 
meters to be optimized with acceptable precision, and

 – to investigate whether additional information (FC, PWP 
or FC + PWP) can improve water flow simulation 
and reduce the uncertainty of the optimized hydraulic 
parameters.

MATERIAL AND METHODS

At first, double-ring infiltration data were numerically 
generated for a hypothetical loamy soil through direct simu- 
lation by HYDRUS-2D/3D (Šimůnek et al., 2011). The 
Mualem-van Genuchten hydraulic parameters of the hypo-
thetical loam soil were determined via class pedo-transfer 

functions (PTFs) of Rosetta Lite (Schaap et al., 2001), 
which is embedded in the HYDRUS software package, as 
follows: residual water content (θr) = 0.078 cm3 cm-3, satu-
rated water content (θs)= 0.430 cm3 cm-3, scaling parameter 
(α) = 0.036 cm-1, shape parameter (n) = 1.56, saturated 
hydraulic conductivity (Ks) = 0.00028 cm min-1, and pore-
connectivity parameter (l) = 0.5.

For simulation of ponded infiltration processes through 
the double-ring infiltrometer, an axisymmetric domain of 
150 cm in both depth and length was considered. The inner 
and outer ring radii were 15 and 30 cm, respectively, and 
the insertion depth of the rings was considered to be 7 cm. 
The initial condition of the simulation domain was given 
in the form of the soil water pressure head. The soil water 
content was assumed to be variable along the profile. In 
this way, the soil water pressure head was linearly distri- 
buted with depth, so the pressure head at the soil surface 
was considered to be −10 000 cm and increased linearly 
with depth up to the pressure head of −4 000 cm at the bot-
tom of the domain. A constant water head (h = 10 cm) was 
considered for the inlet boundary conditions of both inner 
ring and outer ring areas, respectively. The soil surface out 
of the area of the rings was subjected to the atmospheric 
boundary conditions. No flux boundary was considered for 
the vertical boundaries of the simulation domain and along 
the ring walls and the bottom boundary condition was con-
sidered as free drainage. The final time for simulation was 
set to 300 min. The well-known Mualem-van Genuchten 
soil hydraulic model (Mualem, 1976; van Genuchten, 
1980), embedded in the HYDRUS software package, was 
selected for the numerical simulations. 

Sensitivity analysis is an essential aspect of analyti-
cal and numerical models (Fuladipanah, 2012). Therefore, 
the infiltration data obtained through direct simulation by 
HYDRUS-2D/3D were used to calculate the sensitivi-
ties of the cumulative infiltration data to the Mualem-van 
Genuchten function parameters (including Ks, θs, θr, n, α, 
and l). The sensitivity coefficient, S(t, bj), was calculated as 
follows (Abbasi, 2015 and Šimůnek et al., 1998):
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where: S(t, bj) is the change in the variable Y (cumulative 
infiltration, cm3) corresponding to a 1% change in parame- 
ter b, ej = jth unit vector, and Δb = 0.01b. Sensitivity coef-
ficients would characterize the behaviour of the objective 
function in the parameter space (Šimůnek et al., 1998).

In the final stage, infiltration data obtained in the first 
stage were used as input data for the optimization of the 
Mualem-van Genuchten hydraulic parameters by inverse 
modelling. The HYDRUS-2D/3D code uses Levenberg-
Marquardt optimization algorithm for the inverse estimation 
(Šimůnek et al., 2011). In this study, twelve different sce-
narios were considered for inverse estimation of the soil 
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hydraulic parameters (Table 1). In the first four scenarios, 
the optimization was done solely using the infiltration 
data. In scenario 1, five parameters of the Mualem-van 
Genuchten model including Ks, θs, θr, n, and α were 
selected as unknown parameters to be optimized via the 
inverse solution using the cumulative infiltration data. 
In scenario 2, we considered four hydraulic parameters 
(Ks, θs, n, and α) as unknown parameters. In scenario 3, 
three parameters were optimized (Ks, n, and α). In scenario 
4, two parameters were optimized (Ks and n). Scenarios 
5-8 were correspondingly similar to scenarios 1-4 but field 
capacity (FC) was also included as an additional predictor. 
Scenarios 9-12 were similar to scenarios 5-8, but perma-
nent wilting point (PWP) was also added as an input.

In order to validate the numerical simulation by 
HYDRUS-2D/3D for the before-mentioned scenarios 
and to select the best scenario(s) for optimization of soil 
hydraulic parameters, generated and simulated cumulative 
infiltration data at 17 discretized times including 1, 2, 5, 10, 
15, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240, 270, and 300 

min were used for statistical comparisons. Statistical crite-
ria of the coefficient of determination (R2), sum squares of 
errors [SSE, (cm3)2], root mean squares of errors (RMSE, 
cm3), and mean bias error (MBE, cm3) were calculated as 
follows:
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T a b l e  1. Generated and simulated cumulative infiltration data by HYDRUS-2D/3D at specified discretized times

Time
(min)

Gene- 
rated
data

(cm3)

Simulated data in different scenarios (cm3)

1* 2 3 4 5 6 7 8 9 10 11 12

1 332.1 376.6 346.1 328.1 349.3 344.3 338.9 337.1 332.7 345.5 349.8 305.3 332.7

2 480.5 522.0 493.6 476.5 492.6 491.9 487.2 485.8 479.7 492.4 498.7 453.9 480.8

5 775.1 813.1 790.4 771.7 782.2 788.7 781.0 779.3 771.5 786.1 795.8 754.1 773.2

10 1108.7 1143.6 1126.3 1106.1 1113.0 1124.9 1113.3 1111.6 1102.2 1116.8 1130.8 1093.7 1104.3

15 1373.9 1406.0 1394.9 1372.2 1376.7 1393.7 1377.8 1376.1 1365.3 1380.1 1398.4 1364.0 1368.0

20 1597.5 1625.3 1620.2 1596.4 1599.3 1619.2 1600.8 1598.9 1587.1 1602.8 1622.7 1591.2 1590.0

30 1987.5 2001.8 2007.4 1986.9 1987.8 2007.2 1989.7 1987.6 1974.6 1991.6 2008.2 1986.8 1977.9

45 2344.2 2343.4 2356.7 2344.3 2344.1 2357.1 2345.6 2343.7 2329.8 2346.4 2355.7 2348.1 2333.7

60 2950.7 2925.6 2946.1 2951.3 2949.3 2947.2 2950.3 2948.8 2934.6 2947.8 2943.6 2960.3 2938.7

90 3740.8 3698.4 3720.6 3742.2 3739.4 3722.0 3738.4 3738.1 3725.3 3731.6 3717.6 3755.0 3729.1

120 4453.2 4410.0 4429.2 4454.3 4450.9 4430.2 4449.4 4449.3 4440.1 4440.9 4426.4 4468.2 4443.3

150 5112.5 5079.6 5091.3 5112.2 5110.4 5092.3 5108.2 5108.6 5102.2 5100.5 5089.5 5125.7 5104.7

180 5757.9 5739.8 5743.9 5756.6 5756.8 5744.6 5754.1 5755.1 5752.1 5749.6 5742.8 5767.2 5753.5

210 6408.3 6400.3 6402.7 6406.3 6407.1 6402.7 6405.3 6406.6 6407.3 6404.3 6402.2 6412.2 6408.1

240 7032.8 7041.7 7035.9 7028.9 7033.1 7035.5 7031.2 7032.3 7037.5 7034.6 7036.2 7030.8 7036.8

270 7634.7 7655.4 7644.9 7628.6 7635.3 7644.3 7635.5 7635.0 7644.0 7642.4 7646.0 7625.2 7643.4

300 8 199.6 8234.7 8216.6 8191.6 8201.3 8215.9 8205.5 8201.6 8216.5 8213.6 8218.5 8183.6 8213.8

*Number of scenario.
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In all the above formulas, Ii and Îi are observed and 
predicted values of cumulative infiltration (cm3) at the dis-
cretized time, respectively, Ī is the mean of the observed 
infiltration values (cm3), and N is the number of the dis-
cretized times. Positive MBE indicates that the model 
predictions are greater than the measured values, and nega-
tive MBE indicates that the measured values are greater than 
the values predicted by the model. However, the absolute 
value of MBE was used for the comparison of the models.

Since different numbers of inputs were used in the diffe-
rent scenarios, the Akaike information criterion (AIC) was 
also used to compare the efficiency of the derived model in 
different scenarios by considering a penalty for scenarios 
with a higher number of inputs (Akaike, 1974). The AIC 
was calculated using:

,nl2 
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where: K is the number of adjustable parameters in the 
model, N is the number of data points (ie infiltration) to be 
fitted (in this study, N=17) and SSE is the sum squares of 
errors. Because N is small in this study, a version of Eq. (6) 
was used to calculate the corrected AIC (AICc):
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According to Burnham and Anderson (2004), Eq. 
(7) should be used unless N/K is greater than about 40. 
In our case, this ratio is much lower than 40. The absolute 
values of AIC and AICc depend on the units of the proper-
ties included in the model and the sample size, but the 
difference (Δ) between the values of AIC or AICc for two 
models is proposed for the efficiency comparison. Models 
having Δ ≤ 2 have substantial support (evidence), those 
with 4 ≤ Δ ≤ 7 have considerably less support, and models 
with Δ > 10 have essentially no support. The model with 
a lower value of AIC or AICc is the better one (Burnham and 
Anderson, 2004).

The index of agreement (d), as a standardized mea- 
sure of the degree of the model prediction error (Willmott, 
1981), was also calculated:
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The d varies between 0 and 1; a value of 1 indicates a per-
fect match, and 0 indicates no agreement at all (Willmott, 
1981).

The efficiency coefficient (EF) proposed by Nash and 
Sutcliffe (1970) was calculated as:
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This coefficient ranges from −∞ to 1. EF = 1 indicates 
a perfect fit while values below 0 result from a worse fit 
than the average of observations.

RESULTS

The cumulative infiltration data (I vs. time) that were 
generated numerically by the HYDRUS-2D/3D for a dou-
ble-ring infiltration experiment in a hypothetical loamy soil 
are shown in Fig. 1.

The sensitivity analysis of the cumulative infiltration 
to one percent change in soil hydraulic parameters is pre-
sented in Fig. 2. The results indicate that the cumulative 
infiltration, measured by the double-ring infiltrometer, is 
most sensitive to the parameter Ks. In addition, the sensi-
tivity of simulations to Ks is time-dependent and increases 
with time. Following Ks, the highest sensitivity coefficient 
belonged to n and θs, respectively. The sensitivities of pon-
ded infiltration to θr and α were relatively much smaller and 
the pore-connectivity parameter (l) was the least sensitive 
parameter (Fig. 2).

Cumulative infiltration data generated and simulated by 
HYDRUS-2D/3D at 17 specified discretized times are pre- 
sented in Table 1. The results of estimation of the soil hy- 
draulic parameters by HYDRUS-2D/3D for different scena- 
rios are summarized in Table 2. Table 3 presents the cal-
culated statistical criteria for the simulation assessment of 

Fig. 1. Cumulative infiltration (I) versus time for a hypothetical 
double-ring infiltration experiment.

Fig. 2. Sensitivity analysis of the cumulative infiltration (I) versus 
time to a 1% change in different soil hydraulic parameters.

 θr   θs   α  n Ks    l   
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different optimization scenarios. According to Table 3, the 
scenarios were ranked based on each statistical criterion. 
Therefore, scenario(s) with the lowest values of defined 
statistical criteria (ie SSE, RMSE, MBE, and AICc) were 
assigned the best one(s) in the ranking.

Since the values of the coefficient of determination 
(R2), d index, and efficiency coefficient (EF) were the same 
in all scenarios, these criteria were not used for the effi-

ciency ranking. The scenario(s) with the lowest overall 
score would be regarded the best one(s) and will impose 
the least error into the cumulative infiltration simulation. 
The results of ranking according to the five criteria, includ-
ing SSE, RMSE, MBE, and AICc, are given in Table 4. 
Figure 3 shows an example of the output simulated by the 
HYDRUS-2D/3D for scenarios 1, 5, and 9. It shows the 
final spatial distribution of water contents in the soil profile 
at the end of the 300 min simulation.

T a b l e   2. Optimized soil hydraulic parameters by HYDRUS-2D/3D for different scenarios

Scenario

Fitted parameters Optimized values of hydraulic parameters

θr θs α
n

Ks θr θs α
n

Ks

(cm3 cm-3) (cm-1) (cm min-1) (cm3 cm-3) (cm-1) (cm min-1)

I

1 + + + + + 0.126
(-0.161 -0.414)*

0.451
(0.209-0.693)

0.0007
(0.0003-0.003)

1.42
(0.16-1.07)

0.0027
(-0.001-0.002)

2 - + + + + - 0.281
(0.251-0.311)

0.01
(-0.001-0.01)

2.56
(1.01-4.11)

0.01
(0.00004-0.01)

3 - - + + + - - 0.04
(0.037-0.039)

1.60
(1.59-1.61)

0.02
(0.0170-0.0173)

4 - - - + + - - - 1.55
(1.53-1.56)

0.017
(0.017-0.018)

I+FC

5 + + + + + 0.127
(0.067−0.188)

0.334
(0.274−0.393)

0.01
(-0.001−0.004)

2.60
(0.13−5.33)

0.01
(0.003−0.02)

6 - + + + + - 0.423
(0.418−0.429)

0.03
(0.029−0.033)

1.52
(1.51−1.53)

0.02
(0.017−0.018)

7 - - + + + - - 0.03
(0.032−0.033)

1.51
(1.51−1.52)

0.017
(0.017−0.018)

8 - - - + + - - - 1.5
(1.49−1.51)

0.0178
(0.0177−0.0179)

I+FC+PWP

9 + + + + + 0.057
(0.045−0.055)

0.366
(0.335−0.396)

0.03
(0.02−0.30)

1.41
(1.38−1.43)

0.02
(0.015−0.016)

10 - + + + + - 0.278
(0.270−0.286)

0.005
(0.005−0.010)

2.07
(2.03−2.11)

0.01
(0.006−0.007)

11 - - + + + - - 0.011
(0.008−0.014)

1.92
(1.74−2.10)

0.01
(0.007−0.011)

12 - - - + + - - - 1.51
(1.49−1.54)

0.018
(0.016−0.019)

I – stands for infiltration data. *The range in the parenthesis is ±95% confidence interval. - means that a parameter is not included in the 
parameter optimization process, + means that a parameter is included in the parameter optimization process.
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DISCUSSION

According to Table 3, there was a high correlation 
between the measured and fitted cumulative infiltration 
data in all scenarios (R2 = 0.999). However, the R2 valu- 
es were essentially the same in all cases, and could not be 
a good criterion to compare the scenarios. The values of 
the d index and EF indicated the adequacy of the model in 
all scenarios, but again they could not be good criteria for 
comparison in this condition.

Based on the other statistical criteria, scenario 7, 
in which parameters α, n, and Ks were fitted using the 
infiltration data plus FC (as additional data) was the best 
one (Table 3). In other words, by reducing the number of 
fitting parameters in the soil hydraulic model from 5 to 
3, the optimization model is improved in agreement with 
the findings of Šimůnek et al. (2001). They reported that 
uncertainty is generally reduced when a limited number of 
parameters are used in the optimization studies. Hopmans 
et al. (2002) also reported that nonuniqueness would be 
diminished by decreasing the number of parameters to be 
optimized in the inverse solution methods. In fact, a flow 

T a b l e  3.  Calculated statistical criteria for the simulation assessment of different optimization scenarios (R2= 0.999)

Scenario SSE (cm3)2 RMSE (cm3) MBE (cm3) AICc EF d

1 15 874.56 30.56 7.48 130.88 1 1

2 4 512.83 16.29 4.51 105.74 1 1

3 179.33 3.25 -2.11 47.65 1 1

4 542.21 5.65 2.27 63.61 1 1

5 4 021.96 15.38 4.2 107.54 1 1

6 280.64 4.06 1.3 58.52 1 1

7 141.79 2.89 0.33 43.66 1 1

8 1 817.84 10.34 -5.17 84.18 1 1

9 1 329.57 8.84 2.18 88.73 1 1

10 5 953.03 18.71 5.84 110.45 1 1

11 3 390.64 14.12 -3.81 97.62 1 1

12 1 069.10 7.93 -3.41 75.15 1 1

T a b l e  4.  Ranking of twelve optimization scenarios using 
different statistical criteria (rank 1 means the best one, and rank 
12 means the worst one)

Scenario SSE (cm3)2 RMSE 
(cm3)

MBE (cm3) AICc

1 12 12 12 12

2 10 10 9 9

3 2 2 3 2

4 4 4 5 4

5 9 9 8 10

6 3 3 2 3

7 1 1 1 1

8 7 7 10 6

9 6 6 4 7

10 11 11 11 11

11 8 8 7 8

12 5 5 6 5

Fig. 3. Simulated 2D spatial distribution of water content in the soil profile after 300 min double-ring infiltration experiment for sce-
narios 1 (a), 5 (b), and 9 (c).

a b c

    Water content
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experiment designed for inverse modelling should include 
measurements that are most sensitive to changes in the 
optimized parameters, thereby eliminating ill-posedness 
(Hopmans et al., 2002).

Sensitivity analysis can help to reduce the number of 
parameters in the optimization process by removing insen-
sitive parameters. Moreover, sensitivity and parameter 
uncertainty are inversely related; that is, highly-sensitive 
measured variables would result in small parameter uncer-
tainties for a given measurement error. In this study, 
cumulative infiltration was least sensitive to l and θr 
(Fig. 2), so by assuming θr as a constant value (ie in sce-
narios 2, 6, and 10), the estimation of the parameters was 
improved (Table 1). This finding is in line with other studies 
stating that sensitivity to the pore-connectivity parameter 
(l) is the lowest (Abbasi et al., 2003). Among the Mualem-
van Genuchten hydraulic parameters, as mentioned by 
Ritter et al. (2004), θs has a clear physical meaning and can 
be measured directly. Therefore, the number of soil hydrau-
lic parameters for optimization was reduced to 3 (α, n, and 
Ks) in scenarios 3, 7, and 11. Scenarios 3 and 7 had the 
best results in the simulation according to different criteria 
(Table 4). By removing α (as a less sensitive parameter), 
the simulation was only improved in scenario 12, but in 
scenarios 4 and 8, the simulation error increased (Table 3). 
It seems that this is due to the high correlation between 
these two parameters, which is achieved through the cor-
relation matrix (Table 5).

On the other hand, using FC as an additional predic-
tor decreased the simulation error: SSE, RMSE, MBE, and 
AICc decreased in these scenarios when compared with 
those with solely cumulative infiltration data as an input. 
Many researchers have reported that cumulative infiltration 
data do not provide enough information to obtain a unique 
set of optimized parameters, and some additional informa-
tion is needed to yield a unique set of optimized parameters 
in inverse problems (Hopmans et al., 2002; Nakhaei and 
Šimůnek, 2014; Ritter et al., 2004; Russo et al., 1991). 
Such additional information could consist of pressure heads 
and/or water contents (Šimůnek and van Genuchten, 1996), 
solute concentrations (Abbasi et al., 2003), or temperatures 
(Nakhaei and Šimůnek, 2014) measured at a certain depth 
along the soil profile. However, our simulation results 
show that the simultaneous use of FC and PWP as an input 
increased the simulation error (Table 3).

A typical soil water retention curve usually consists of 
three zones: capillary saturation, desaturation, and residual 
saturation zones (Sillers et al., 2001). The FC is located 
in the low matric suction range of the desaturation zone, 
but PWP is located in the dry range (ie residual saturation 
zone). The FC is mainly affected by soil structure, pore-
size distribution, and continuity. It seems that a relatively 
low suction value associated with FC can be better linked 
with determination of soil hydraulic properties under pon-
ded infiltration than to PWP. In other words, saturated flow 
in ponded infiltration is also governed by soil structure 
through the pore space characteristics. Therefore, using FC 
as a predictor could be expected to increase the efficacy of 
prediction of soil hydraulic parameters. Si and Kachanoski 
(2000) believed that the usefulness of additional data may 
depend on its sensitivity to the soil hydraulic parameters, 
the independence of the existing observations, and the 
measurement error.

CONCLUSIONS

1. HYDRUS-2D/3D software to simulate water infiltra-
tion through double-ring infiltrometers into a loamy soil 
profile we used. The results showed that the numerical 
inverse solution of double-ring infiltrometers data provi- 
ded a relatively simple, yet reliable alternative method for 
determining the soil hydraulic properties.

2. By reducing the number of parameters involved in 
the optimization process, the simulation error is reduced. 
Therefore, sensitivity analysis would be required to iden-
tify the sensitive parameters. Using prior information for 
insensitive parameters (eg residual water content) or soil 
hydraulic parameters that can be easily measured indepen-
dently (eg saturated water content) is effective in obtaining 
reliable answers.

3. Including additional data such as independently 
measured water content at the pressure head of −330 cm 
(ie field capacity), as in our study, is suggested to better 
optimize/define the soil hydraulic functions. It is noticeable 
that although it is expected that additional data might lead 
to improved results, it seems that using both field capaci- 
ty and permanent wilting point data as an input could not 
enhance the likelihood of uniqueness and stability of the 
inverse solution in the estimation process.
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